Pointwise Green’s Function Approach to Stability for Scalar Conservation Laws
نویسنده
چکیده
We study the pointwise behavior of perturbations from a viscous shock solution to a scalar conservation law, obtaining an estimate independent of shock strength. We find that for a perturbation with initial data decaying algebraically or slower, the perturbation decays in time at the rate of decay of the integrated initial data in any Lp norm, p ≥ 1. Stability in any Lp norm is a direct consequence. The approach taken is that of obtaining pointwise estimates on the perturbation through a Duhamel’s principle argument that employs recently developed pointwise estimates on the Green’s function for the linearized equation. c © 1999 John Wiley & Sons, Inc.
منابع مشابه
Pointwise Green’s Function Estimates Toward Stability for Degenerate Viscous Shock Waves
We consider degenerate viscous shock waves arising in systems of two conservation laws, where degeneracy here describes viscous shock waves for which the asymptotic endstates are sonic to the hyperbolic system (the shock speed is equal to one of the characteristic speeds). In particular, we develop detailed pointwise estimates on the Green’s function associated with the linearized perturbation ...
متن کاملNonlinear stability of degenerate shock profiles
We consider degenerate viscous shock profiles arising in systems of two regularized conservation laws, where degeneracy here describes viscous shock profiles for which the asymptotic endstates are sonic to the associated hyperbolic system (the shock speed is equal to one of the characteristic speeds). Proceeding with pointwise estimates on the Green’s function for the linear system of equations...
متن کاملViscous Conservation Laws, Part I: Scalar Laws
Viscous conservation laws are the basic models for the dissipative phenomena. We aim at a systematic presentation of the basic ideas for the quantitative study of the nonlinear waves for viscous conservation laws. The present paper concentrates on the scalar laws; an upcoming Part II will deal with the systems. The basic ideas for scalar viscous conservation laws originated from two sources: th...
متن کاملPointwise Error Estimates for Scalar Conservation Laws with Piecewise Smooth Solutions∗
We introduce a new approach to obtain sharp pointwise error estimates for viscosity approximation (and, in fact, more general approximations) to scalar conservation laws with piecewise smooth solutions. To this end, we derive a transport inequality for an appropriately weighted error function. The key ingredient in our approach is a one-sided interpolation inequality between classical L1 error ...
متن کاملPointwise Error Estimates for Relaxation Approximations to Conservation Laws
We obtain sharp pointwise error estimates for relaxation approximation to scalar conservation laws with piecewise smooth solutions. We first prove that the first-order partial derivatives for the perturbation solutions are uniformly upper bounded (the so-called Lip+ stability). A one-sided interpolation inequality between classical L1 error estimates and Lip+ stability bounds enables us to conv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999